Abstract

Forests are integral to sustaining clean water resources and healthy watersheds. It is critical, therefore, that managers fully understand the potential impacts of their actions on myriad ecosystem services provided by forested watersheds. While forest hydrologists have long used paired-watershed experiments to elucidate the complex interactions between forest management and watershed biogeochemical and ecohydrological processes, there is still much to learn from these studies. Here, we present an overview of the process for designing a paired-watershed study using a large harvesting experiment at the Caspar Creek Experimental Watersheds in coastal California as an example. We detail many considerations when designing such an experiment and highlight the wide range of scientific investigations that are part of the larger experiment. Paired watershed studies are a great example of community engaged scholarship and offer the unique opportunity to work with land managers to solve applied problems while simultaneously discovering new fundamental knowledge about how watersheds function.

Highlights

  • Healthy forested headwater watersheds are critical for provision of a wide range of ecosystem services, including terrestrial and aquatic habitat, flood mitigation through storage of water, and the majority of drinking water supplies throughout the world (Sedell et al, 2000)

  • This study addresses the following specific research objectives: 1) Determine the absolute and proportional amounts of precipitation intercepted by forest canopy and litter in the second and third-growth stands of the South Fork Caspar Creek

  • Overlapping the FMP and California Forest Practice Rules (CFPRs) requirements created a complex pattern of harvest limitations in the gaged sub-watersheds

Read more

Summary

Introduction

Healthy forested headwater watersheds are critical for provision of a wide range of ecosystem services, including terrestrial and aquatic habitat, flood mitigation through storage of water, and the majority of drinking water supplies throughout the world (Sedell et al, 2000). The ultimate goal of these studies was to understand how forest practices affected streamflow and sediment production (Lugo et al, 2006; Neary, 2016). These paired watershed studies, located in a wide range of ecosystems and climates, found similar water yield results regardless of topography or vegetation type—removing > 20% of basal area from a stand typically resulted in measurable increases in streamflow (Hibbert, 1967; Stednick, 1996). As forests regenerate, the effects on streamflow generally diminish with recent evidence illustrating longer-term declines in summer low flows due to greater evapotranspiration rates (Reid, 2012; Perry and Jones, 2017; Coble et al, 2020; Segura et al, 2020)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.