Abstract

In recent years, convolutional neural networks (CNNs) have been widely used in the field of hyperspectral image (HSI) classification and achieved good classification results due to their excellent spectral–spatial feature extraction ability. However, most methods use the deep semantic features at the end of the network for classification, ignoring the spatial details contained in the shallow features. To solve the above problems, this article proposes a hyperspectral image classification method based on a Feature Embedding Network with Multiscale Attention (MAFEN). Firstly, a Multiscale Attention Module (MAM) is designed, which is able to not only learn multiscale information about features at different depths, but also extract effective information from them. Secondly, the deep semantic features can be embedded into the low-level features through the top-down channel, so that the features at all levels have rich semantic information. Finally, an Adaptive Spatial Feature Fusion (ASFF) strategy is introduced to adaptively fuse features from different levels. The experimental results show that the classification accuracies of MAFEN on four HSI datasets are better than those of the compared methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.