Abstract

A feasible method for mapping the fraction of Snow Covered Area (SCA) in the boreal zone is presented. The method ( SCAmod) is based on a semi-empirical model, where three reflectance contributors (wet snow, snow-free ground and forest canopy), interconnected by an effective canopy transmissivity and SCA, constitute the observed reflectance from the target area. Given the reflectance observation, SCA is solved from the model. The predetermined values for the reflectance contributors can be adjusted to an optional wavelength region, which makes SCAmod adaptable to various optical sensors. The effective forest canopy transmissivity specifies the effect of forests on the local reflectance observation; it is estimated using Earth observation data similar to that employed in the actual SCA estimation. This approach enables operational snow mapping for extensive areas, as auxiliary forest data are not needed. Our study area covers 404 000 km 2, comprising all drainage basins of Finland (with an average area of 60 km 2) and some transboundary drainage basins common with Russia, Norway and Sweden. Applying SCAmod to NOAA/AVHRR cloud-free data acquired during melting periods 2001–2003, we estimated the areal fraction of snow cover for all the 5845 basins. The validation against in situ SCA from the Finnish snow course network indicates that with SCAmod, 15% (absolute SCA-units) accuracy for SCA is gained. Good results were also obtained from the validation against snow cover information provided by the Finnish weather station network, for example, 94% of snow-free and fully snow-covered basins were recognized. A general formula for deriving the statistical accuracy of SCA estimates provided by SCAmod is presented, complemented by the results when the AVHRR data are employed. Snow melting in Finland has been operatively monitored with SCAmod in Finnish Environment Institute (SYKE) since year 2001. The SCA estimates have been assimilated to the Finnish national hydrological modelling and forecasting system since 2003, showing a substantial improvement in forecasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.