Abstract

The aim of this study was to explore the capability of spectroscopy in the visible (Vis) and short wavelength near-infrared (NIR) regions for the non-destructive measurement of wine composition in intact bottles. In this study we analysed a wide range of commercial wines obtained in Australia in different types of bottles (e.g. colours, diameters and heights), including different wine styles and varieties. Wine bottles were scanned in the Vis-NIR region (600-1,100 nm) in a monochromator instrument in transflectance mode. Principal component analysis (PCA) and partial least-squares (PLS) regression were used to interpret the spectra and develop calibrations for wine composition. Due to the relatively small number of samples available full cross-validation (leave-one-out) was used as validation. The coefficient of correlation in calibration [Formula: see text] and the standard error of cross-validation (SECV) were 0.67 (SECV: 0.48%), 0.83 (SECV: 4.01 mg L-1), 0.70 (SECV: 28.6 mg L-1) and 0.50 (SECV: 0.15) for alcohol content, total SO2, free SO2 and pH, respectively, in the set of wine samples analysed. These preliminary results showed that the assessment of wine composition by Vis and short wavelengths in the NIR is possible for either qualitative analysis (e.g. low-, medium- and high-quality grading), or for screening of composition during bottling and storage. Although low accuracy and precision were obtained for the chemical parameters routinely analysed in wine, calibration models for the chemical parameters were considered acceptable for screening purposes in terms of the standard errors obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.