Abstract

This paper proposes a new fault-tolerant strategy for a multilevel converter with an integrated impedance-source network. The proposed fault-tolerant strategy leverages the flexibility provided by the impedance-source network to implement the fundamental phase-shift compensation (FPSC) method in order to restore operation of a multilevel converter with one or more faulty switches to the prefault conditions. In case of a fault occurrence, the proposed fault-tolerant strategy makes the most use of the remaining converter capacity and generates balanced line-to-line voltages, while evenly distributing an inevitable voltage stress increase, over all converter switches. In this paper, first, a brief background about an impedance-source based cascaded H-bridge converter and a suitable modulation method for it is provided. Then, the FPSC method is explained and the proposed fault-tolerant strategy based on this method is introduced. Finally, several experimental results from a prototype converter are provided to validate the operation of the proposed strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.