Abstract
We consider the Poisson equation with Dirichlet boundary conditions, in a domain Ωb¯B, where Ω⊂{\Bbb R}n, and B is a collection of smooth open subsets (typically balls). The objective is to split the initial problem into two parts: a problem set in the whole domain Ω, for which fast solvers can be used, and local subproblems set in narrow domains around the connected components of B, which can be solved in a fully parallel way. We shall present here a method based on a multi-domain formulation of the initial problem, which leads to a fixed point algorithm. The convergence of the algorithm is established, under some conditions on a relaxation parameter t. The dependence of the convergence interval for t upon the geometry is investigated. Some 2D computations based on a finite element discretization of both global and local problems are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.