Abstract

Based on the two-dimensional fast Fourier transform (2D FFT) algorithm, a wave superposition spectral method with complex radius vector has been proposed to efficiently analyze the acoustic radiation from an axisymmetric body. First, the complex Fourier series are used along both circumferential and meridian directions, to expand the integral kernel function and unknown source strength density distributed function. Then, by means of the rectangular integral formula, the radiation sound pressure is described in the form of two-dimensional discrete Fourier transform and generalized through 2D FFT algorithm. Finally, several numerical examples are performed to verify the accuracy and efficiency of the present method. Comparing with the other existing analysis ways, the present method has three different characteristics: (1) there is no singular integral in the numerical computation; (2) the unique solution can be given for all eigen wavenumbers owing to the application of the virtual boundary technology with complex radius vector; and (3) the computational efficiency is improved remarkably because all Fourier terms are calculated simultaneously through 2D FFT algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.