Abstract

Modeling of active control of microparticles is important in a number of different microfluidic applications, including bioflows and self-assembled structures. We present here a fast method for simulating the dynamics of many particles in complex microgeometries. The method is based on a spatial distribution of finite force multipoles and requires much less resolution than full direct numerical simulations. The numerical formulation is summarized, and examples are given for Stokes flow and low Reynolds number flow in smooth and rough microchannels. Comparisons made with full direct numerical simulations and experiments validate the accuracy and efficiency of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.