Abstract

This paper proposes a new computational optimization method modified from the dynamic encoding algorithm for searches (DEAS). Despite the successful optimization performance of DEAS for both benchmark functions and parameter identification, the problem of exponential computation time becomes serious as problem dimension increases. The proposed optimization method named univariate DEAS (uDEAS) is especially implemented to reduce the computation time using a univariate local search scheme. To verify the algorithmic feasibility for global optimization, several test functions are optimized as benchmark. Despite the simpler structure and shorter code length, function optimization performance show that uDEAS is capable of fast and reliable global search for even high dimensional problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.