Abstract

We present a fast and accurate numerical scheme for the approximation of the primitive equations of the atmosphere. The temporal variable is discretized by using a special semi-implicit scheme which requires only to solve a Helmholtz equation and a nonlocal Stokes problem at each time step; the spatial variables are discretized by a spectral-Galerkin procedure with the horizontal components of vectorial spherical harmonics for the horizontal variables and Legendre or Chebyshev polynomials for the vertical variable. The new scheme has two distinct features: (i) it is unconditionally stable given fixed physical parameters, and (ii) the Helmholtz equation and the nonlocal Stokes problem which need to be solved at each time step can be decomposed into a sequence of one-dimensional equations (in the vertical variable) which can be solved by a spectral-Galerkin method with optimal computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.