Abstract

Controlling false acceptance errors is of critical importance in many pattern recognition applications, including signature and speaker verification problems. Toward this goal, this paper presents two post-processing methods to improve the performance of hyperspherical classifiers in rejecting patterns from unknown classes. The first method uses a self-organizational approach to design minimum radius hyperspheres, reducing the redundancy of the class region defined by the hyperspherical classifiers. The second method removes additional redundant class regions from the hyperspheres by using a clustering technique to generate a number of smaller hyperspheres. Simulation and experimental results demonstrate that by removing redundant regions these two post-processing methods can reduce the false acceptance error without significantly increasing the false rejection error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.