Abstract

In this study, highly efficient photocatalysts were synthesized by the successful hybridization of ZnO nanorods (ZnO NRs) with reduced graphene oxide (RGO) by a facile and green hydrothermal process. The photocatalytic experimental results indicated that all the RGO–ZnO NR composite photocatalysts exhibited enhanced photocatalytic activity for the degradation of Rhodamine B (RhB) under UV-light irradiation. It is found that the degree of photocatalytic activity enhancement strongly depends on the mass ratio of RGO in the composites; the highest photocatalytic activity which equals to 6.8 times as that of pristine ZnO NRs can be obtained when the loading amount of RGO is 4.0wt.% of RGO. The enhancement of photocatalytic activity can be attributed to the synergistic effect of the effective inhibition of the recombination of photo-generated electron–hole pairs and the elevated absorption ability for dyes, due to the strong electronic interaction between ZnO NRs and RGO nanosheets. Considering the facile and green method for the reduction of GO, the present investigation can be further employed to fabricate more graphene-based composites for various environmental and energy-related applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.