Abstract

Nanogap between two metallic nanostructures has been demonstrated to be able to efficiently concentrate an incident electromagnetic field into a small space. As a result, the formed strong field localization could extraordinarily enhance the surface-enhanced Raman scattering (SERS). In this study, controllable plasmonic nanogaps are formed by separating two layers of plasmonic Ag nanoparticles (50–100nm) with small Au nanoparticles (2.5–6nm). The size of the nanogaps can be readily tuned by altering the size of the Au nanoparticles. Utilizing an SERS substrate with such nanogaps, the SERS performance can be significantly improved. Such improvement could be attributed to the strongly enhanced electric field within the nanogaps, which is demonstrated by the Finite-difference time-domain simulations. The present work provides a facile strategy to rationally fabricate SERS substrates with controllable nanogaps and intensified SERS signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.