Abstract

Pursuit-evasion games are ubiquitous in nature and in an artificial world. In nature, pursuer(s) and evader(s) are intelligent agents that can learn from experience, and dynamics (i.e., Newtonian or Lagrangian) is vital for the pursuer and the evader in some scenarios. To this end, this paper addresses the pursuit-evasion game of intelligent agents from the perspective of dynamics. A bio-inspired dynamics formulation of a pursuit-evasion game and baseline pursuit and evasion strategies are introduced at first. Then, reinforcement learning techniques are used to mimic the ability of intelligent agents to learn from experience. Based on the dynamics formulation and reinforcement learning techniques, the effects of improving both pursuit and evasion strategies based on experience on pursuit-evasion games are investigated at two levels 1) individual runs and 2) ranges of the parameters of pursuit-evasion games. Results of the investigation are consistent with nature observations and the natural law - survival of the fittest. More importantly, with respect to the result of a pursuit-evasion game of agents with baseline strategies, this study achieves a different result. It is shown that, in a pursuit-evasion game with a dynamics formulation, an evader is not able to escape from a slightly faster pursuer with an effective learned pursuit strategy, based on agile maneuvers and an effective learned evasion strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.