Abstract
A general dynamical theory of magnetizable, electrically and thermally conducting media is developed for soft ferromagnetic or paramagnetic materials in external electromagnetic fields. The general equations are linearized by assuming infinitesimal strains, linear constitutive equations and that all field variables may be divided into two parts: a "rigid body state" and a "perturbation state". The former is the same as the one in rigid body electrodynamics, and the latter which accounts for electromagnetic interaction with the deformable continuum is coupled with stress and strain through linearized field equations. The theory is developed for general anisotropy but specialized for materials with uniaxial, or higher, symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.