Abstract
Early detection of falls is important for reducing fall injuries. However, existing fall detection strategies mostly focus on reducing impact injuries rather than avoiding falls. This study proposed the concept of identifying "Imbalance Point" to warn the body imbalance, allowing sufficient time to recover balance. And if falling cannot be avoided, an impact sign is released by detecting the "Fall Point" prior to the impact. To achieve this goal, motion prediction model and balance recovery model are integrated into a spatiotemporal framework to analyze dynamic and kinematic features of body motion. Eight healthy young volunteers participated in three sets of experiment: Normal trial, Recovery trial and Fall trial. The body motion in the trials was recorded using Microsoft Azure Kinect. The results show that the developed algorithm for Fall Point detection achieved 100% sensitivity and 98.6% specificity, along with an average lead time of 297ms. Moreover, Imbalance Point was successfully detected in all Fall trials, and the average time interval between Imbalance Point and Fall Point was 315ms, longer than reported step reaction time for elderly (approximately 270ms). The experiment results demonstrate that the developed algorithm have great potential for fall warning and protection in the elderly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.