Abstract

This paper is the first of two which presents the development of a dynamic model for single-effect LiBr/water absorption chillers. The model is based on external and internal steady-state enthalpy balances for each main component. Dynamic behaviour is implemented via mass storage terms in the absorber and generator, thermal heat storage terms in all vessels and a delay time in the solution cycle. A special feature is that the thermal capacity is partly connected to external and partly to internal process temperatures. In this paper, the model is presented in detail. For verification, the model has been compared to experimental data. The dynamic agreement between experiment and simulation is very good with dynamic deviations around 10 s. General functionality of the model and a more detailed comparison with experimental data are presented in Part II of this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.