Abstract

AbstractIn this article, we introduce techniques to build a reduced-order model of a fluid system that accurately predicts the dynamics of a flow from local wall measurements. This is particularly difficult in the case of noise amplifiers where the upstream noise environment, triggering the flow via a receptivity process, is not known. A system identification approach, rather than a classical Galerkin technique, is used to extract the model from time-synchronous velocity snapshots and wall shear-stress measurements. The technique will be illustrated for the case of a transitional flat-plate boundary layer, where the snapshots of the flow are obtained from direct numerical simulations. Particular attention is directed to limiting the processed data to data that would be readily available in experiments, thus making the technique applicable to an experimental set-up. The proposed approach combines a reduction of the degrees of freedom of the system by a projection of the velocity snapshots onto a proper orthogonal decomposition basis combined with a system identification technique to obtain a state-space model. This model is then used in a feedforward control set-up to significantly reduce the kinetic energy of the perturbation field and thus successfully delay transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.