We present a dynamic programming model which is used to investigate hypothermia as an adaptive response by small passerine birds in winter. The model predicts that there is a threshold function of reserves during the night, below which it is optimal to enter hypothermia, and above which it is optimal to rest. This threshold function decreases during the night, with a particularly sharp drop at the end of the night, representing the time and energy costs associated with returning to normal body temperature. The results of the model emphasise the trade-off between energy and predation, not just between foraging options, but also between foraging during the day and entering hypothermia at night. The value of being able to use hypothermia represents not just energy savings, but also reduced predation risk due to changes in the optimal foraging strategy. Conditions which give a high value of hypothermia are short photoperiod, variable food supply, low temperatures, poor and scarce food supplies.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call