Abstract

The core circadian oscillator of cyanobacteria consists of three proteins, KaiA, KaiB, and KaiC. This circadian oscillator could be functionally reconstituted in vitro with these three proteins, and therefore has been a very important model in circadian rhythm research. KaiA can bind to KaiC and then stimulate its phosphorylation, but their interaction mechanism remains elusive. In this study, we followed the “second-site suppressor” strategy to investigate the interaction mechanism of KaiA and KaiC. Using protein sequence analyses, we showed that there exist co-varying residues in the binding interface of KaiA and KaiC. The followed mutagenesis study verified that these residues are important to the functions of KaiA and KaiC, but their roles could not be fully explained by the reported complex structures of KaiA and KaiC derived peptides. Combining our data with previous reports, we suggested a dynamic interaction mechanism in KaiA-KaiC interaction, in which both KaiA and the intrinsically disordered tail of KaiC undergo significant structural changes through conformational selection and induced fit during the binding process. At last, we presented a mathematic model to support this hypothesis and explained the importance of this interaction mechanism for the KaiABC circadian oscillator.

Highlights

  • Much has been done to understand the molecular mechanism of the KaiABC system, the complex structures between these three clock proteins remain mysterious

  • In electron microscopy (EM) analysis, KaiA was found to bind with KaiC via the interactions between the C-terminal domains of KaiA homo-dimer and an intrinsically disordered region (IDR) - the C-terminal tail of KaiC18

  • The full-length protein sequences were aligned in MEGA v5.0520 respectively, and manually adjusted to keep the intact of the secondary structural elements according to the known structure of the respective protein of S. e

Read more

Summary

Introduction

Much has been done to understand the molecular mechanism of the KaiABC system, the complex structures between these three clock proteins remain mysterious. A KaiC C-terminus derived peptide was used and its complex structure with the C-terminal domains of KaiA homo-dimer was determined by NMR19. In this model, the KaiC C-terminus derived peptide adopted a random coil conformation fitting in the concaved space between the C-terminal domains of KaiA homo-dimer. By combining multiple sequence alignments, evolutionary information, computational modeling of protein structures, and site-directed mutagenesis, we comprehensively studied the interaction interface between the KaiA C-terminal domain and the KaiC C-terminal tail, and showed that the interaction between KaiA and KaiC has a dynamic mechanism, in which both KaiA and the C-terminal tail of KaiC have significant conformational changes upon binding. A mathematic model was used to demonstrate that this binding mechanism is critical to the oscillation of the KaiABC system

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.