Abstract

This paper rigorously examines a dynamic foundation of the maxmin criterion (also known as Rawlsian criterion), which selects a social outcome that maximizes the payoff of the worst-off agent. A society is populated with two types of equal and finite numbers of agents, row and column. When two agents, one from each type, are matched, a pair of non-transferable payoffs is drawn from a compact and convex set, and they simultaneously choose whether or not to agree to initiate a long term relationship. They actually form the relationship if they both agree to do so; otherwise, they obtain their respective disagreement payoffs and return to their respective pools of agents, waiting for the next period for a new match. Those who form a long term relationship can unilaterally choose to terminate their relationship in later periods, while if both agree to continue the relationship, they can do so with a high probability less than one. If their relationship is broken, they return to their respective pools as described above.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.