Abstract

The coupling of a dynamic energy budget (DEB) model with an integral projection model (IPM; i.e. generating a DEB-IPM) is a promising new method to predict the population-level dynamics of species based on individuals. In a single framework, the DEB component provides links to the individual-level physiological processes, and the IPM component provides an alternative way to investigate ecological changes in quantitative life history characteristics and population dynamics. In this paper we present a DEB-IPM to analyse a Japanese anchovy (Engraulis japonicus) population in Chinese seas. The coupled model describes the dynamics of a population of individuals, where each individual follows an energy budget. Primary model parameters (e.g. energy conductance, ὺ; allocation coefficient, κ; and volume-specific somatic maintenance, [ṗM]) were estimated. The mean population growth rate (rp) was calculated to be 3.4year–1. The predicted demographic rates (e.g. growth, survival and reproduction) were well within observed ranges, and fit within average recorded values, and captured known seasonal trends. DEB-IPMs could be a useful tool to capture the dynamics of biodiversity amidst global environmental changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.