Abstract

Recovery performance in the event of failures is very important for distributed real-time database systems. This paper presents a time-cognizant logging-based crash recovery scheme (TCLCRS) that aims at distributed real-time databases, which adopts a main memory database as its ground support, hi our scheme, each site maintains a real-time log for local transactions and the sub-transactions, which execute at the site, and execute local checkpointing independently. Log records are stored in non-volatile high-speed store, which is divided into four different partitions based on transaction classes. During restart recovery after a site crash, partitioned crash recovery strategy is adopted to ensure that the site can be brought up before the entire local secondary database is reloaded in main memory. The partitioned crash recovery strategy not only guarantees the internal consistency to be recovered, but also guarantee the temporal consistency and recovery of the sates of physical world influenced by uncommitted transactions. Combined with two-phase commit protocol, TCLCRS can guarantee failure atomicity of distributed real-time transactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.