Abstract
We consider a dynamic frictionless contact problem between two elasto-viscoplastic piezoelectric bodies with damage. The evolution of the damage is described by an inclusion of parabolic type. The contact is modelled with normal compliance condition. The adhesion of the contact surfaces is considered and is modelled with a surface variable, the bonding field whose evolution is described by a first order differential equation. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of nonlinear evolution equations with monotone operators, a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed-point arguments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.