Abstract
This study proposed a dynamic adaptive weighted differential evolution (DAWDE) algorithm to solve the problems of differential evolution (DE) algorithm such as long search time, easy stagnation, and local optimal solution. First, adaptive adjustment strategies of scaling factor and crossover factor are proposed, which are utilized to dynamically balance the global and local search, and avoid premature convergence. Second, an adaptive mutation operator based on population aggregation degree is proposed, which takes population aggregation degree as the amplitude coefficient of the basis vector to determine the influence degree of the optimal individual on the mutation direction. Finally, the Gauss perturbation operator is introduced to generate random disturbance and accelerate premature individuals to jump out of the local optimum. The simulation results show that the DAWDE algorithm can obtain better optimization results and has the characteristics of stronger global optimization ability, faster convergence, higher solution accuracy, and stronger stability compared with other optimization algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.