Abstract
In this paper, the inverse Kalman filtering problem is addressed using a duality-based framework, where certain statistical properties of uncertainties in a dynamical model are recovered from observations of its posterior estimates. The duality relation in inverse filtering and inverse optimal control is established. It is shown that the inverse Kalman filtering problem can be solved using results from a well-posed inverse linear quadratic regulator. Identifiability of the considered inverse filtering model is proved and a unique covariance matrix is recovered by a least squares estimator, which is also shown to be statistically consistent. Effectiveness of the proposed methods is illustrated by numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.