Abstract

Forest height and vertical structure profile functions can be estimated using polarimetric interferometric synthetic aperture radar (PolInSAR) data based on the random volume over ground (RVoG) model and polarization coherence tomography (PCT) theory, respectively. For each resolution cell, considering different forest vertical scattering structure functions to solve the corresponding forest height, the accuracy of PolInSAR forest height inversion will be improved. In this study, a forest vertical structure profile function and forest height inversion algorithm based on PCT technology was developed by using dual-baseline PolInSAR data. Then the deviation of forest height was corrected according to the inverted forest vertical structure. Finally, the LiDAR and PolInSAR data were employed to verify the proposed method. The experimental results show that the accuracy of the proposed method (tropical forest: RMSE = 5.96 m, boreal forest: RMSE = 3.11 m) is 25.5% and 30.43% higher than that of the dual-baseline RVoG model algorithm (tropical forest: RMSE = 8 m, boreal forest: RMSE = 4.47 m).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.