Abstract

When users of interactive computers must work with new software without formal training, they rely on strategies for “exploratory learning”. These include trial and error, asking for help from other users, and looking for information in printed and on-line documentation. This paper describes a cognitive model of exploratory learning, which covers both trial-and-error and instruction-taking activities. The model, implemented in Soar, is grounded in empirical data of subjects in a task-oriented, trial-and-error exploratory learning situation. A key empirical finding reflected in the model is the repeated scanning of a subset of the available menu items, with increased attention to items on each successive scan. This is explained in terms of dual search spaces, the external interface and the user's internal knowledge, both of which must be tentatively explored with attention to changing costs and benefits. The model implements this dual-space search by alternating between external scanning and internal comprehension, a strategy that gradually shifts its focus to a potentially productive route through an interface. Ways in which interfaces might be designed to capitalize on this behaviour are suggested. The research demonstrates how cognitive modelling can describe behaviour of the kind discussed by theories of “situated cognition”.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.