Abstract

The relationship between the plasminogen activator system and integrin function is well documented but incompletely understood. The mechanism of uPAR-mediated signaling across the membrane and the molecular basis of uPAR-dependent activation of integrins remain important issues. The present study was undertaken to identify the molecular intermediates involved in the uPAR signaling pathway controlling alpha5beta1-integrin activation and fibronectin polymerization. Disruption of lipid rafts with MbetaCD or depletion of caveolin-1 by siRNA led to the inhibition of uPAR-dependent integrin activation and stimulation of fibronectin polymerization in human dermal fibroblasts. The data indicate a dual role for caveolin-1 in the uPAR signaling pathway, leading to integrin activation. Caveolin-1 functions initially as a membrane adaptor or scaffold to mediate uPAR-dependent activation of Src and EGFR. Subsequently, in its phosphorylated form, caveolin-1 acts as an accessory molecule to direct trafficking of activated EGFR to focal adhesions. These studies provide a novel paradigm for the regulation of crosstalk among integrins, growth-factor receptors and uPAR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.