Abstract

AbstractPlating battery electrodes typically deliver higher specific capacity values than insertion or conversion electrodes because the ion charge carriers represent the sole electrode active mass, and a host electrode is unnecessary. However, reversible plating electrodes are rare for electronically insulating nonmetals. Now, a highly reversible iodine plating cathode is presented that operates on the redox couples of I2/[ZnIx(OH2)4−x]2−x in a water‐in‐salt electrolyte. The iodine plating cathode with the theoretical capacity of 211 mAh g−1 plates on carbon fiber paper as the current collector, delivering a large areal capacity of 4 mAh cm−2. Tunable femtosecond stimulated Raman spectroscopy coupled with DFT calculations elucidate a series of [ZnIx(OH2)4−x]2−x superhalide ions serving as iodide vehicles in the electrolyte, which eliminates most free iodide ions, thus preventing the consequent dissolution of the cathode‐plated iodine as triiodides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.