Abstract

Repression of nuclear factor (NF)-kappaB-dependent gene expression is one of the key characteristics by which glucocorticoids exert their antiinflammatory and immunosuppressive effects. In vitro studies have shown protein-protein interactions between NF-kappaB and the glucocorticoid receptor, possibly explaining their mutual repression of transcriptional activity. Furthermore, glucocorticoid-induced transcription of IkappaBalpha was presented as a mechanism in mediation of immunosuppression by glucocorticoids. At present, the relative contribution of each mechanism has not been investigated. We show that dexamethasone induced IkappaBalpha gene transcription in human pulmonary epithelial A549 cells. However, this enhanced IkappaBalpha synthesis did not cause repression of NF-kappaB DNA-binding activity. In addition, dexamethasone was still able to inhibit the expression of NF-kappaB target genes (cyclooxygenase-2, intercellular adhesion molecule-1) in the absence of protein synthesis. Furthermore, we show that the antihormone RU486 did not induce IkappaBalpha expression. However, RU486 was still able to induce, albeit less efficiently, both glucocorticoid- and progesterone receptor-mediated repression of endogenous NF-kappaB target gene expression in A549 cells and the breast cancer cell line T47D, respectively. Taken together, these results indicate that induced IkappaBalpha expression accounts for only part of the repression of NF-kappaB activity by glucocorticoids and progestins. In addition, protein-protein interactions between NF-kappaB and the glucocorticoid or progesterone receptor, resulting in repression of NF-kappaB activity, seem also to be involved. We therefore conclude that NF-kappaB activity is repressed via a dual mechanism involving both protein-protein interactions and induction of IkappaBalpha.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.