Abstract

This paper presents a novel dual-loop array antenna targeted at current and future base station applications. The antenna has four rectangular loops and four trapezoidal loops printed on the front and back sides, respectively, of a substrate placed above a flat square reflector. All eight loop radiators are excited simultaneously with properly designed feed networks to achieve its ±45° polarization states. The trapezoidal loops act like folded (electric) dipoles; the rectangular loops act primarily as magnetic dipoles. The combination of these two loop arrays leads to a type of magnetoelectric loop antenna that has stable directivity patterns with high cross-polarization discrimination (XPD) values across a 45.5% operational fractional bandwidth from 1.7 to 2.7 GHz. A fabricated and measured prototype confirms the simulation results and demonstrates that the half-power beamwidths in the horizontal plane vary between 63° and 70°, the XPD values are >20 dB in the boresight direction, and are >10 dB within the entire cellular coverage angular range: $-60^\circ \leq \theta \leq 60^\circ $ .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.