Abstract

This study investigated a dual-chamber microbial fuel cell-based biosensor (DC-MFC-B) for monitoring copper and arsenic in municipal wastewater. Operational conditions, including pH, flow rate, a load of organic substrate and external resistance load, were optimized to improve the biosensor's sensitivity. The DC-MFC-B's toxicity response was established under the electroactive bacteria inhibition rate function to a specific heavy metal level as well as the recovery of the DC-MFC-B. Results show that the DC-MFC-B was optimized at the operating conditions of 1000 Ω external resistance, COD 300 mg L−1 and 50 mM K3Fe(CN)6 as a catholyte solution. The voltage output of the DC-MFC-B decreased with increasing in the copper and arsenic concentrations. A significant linear relationship between the maximum voltage of the biosensor and the heavy metal concentration was obtained with a coefficient of R2 = 0.989 and 0.982 for copper and arsenic, respectively. The study could detect copper (1–10 mg L−1) and arsenic (0.5–5 mg L−1) over wider range compared to other studies. The inhibition ratio for both copper and arsenic was proportional to the concentrations, indicating the electricity changes are mainly dependent on the activity of the electrogenic bacteria on the anode surface. Moreover, the DC-MFC-B was also recovered in few hours after being cleaned with a fresh medium. It was found that the concentration of the toxicant effected on the recovery time and the recovery time was varied between 4 and 12 h. In short, this work provided new avenues for the practical application of microbial fuel cells as a heavy metal biosensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.