Abstract

Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear hormone receptor family, is a master regulator of adipogenesis. Humans with dominant negative PPARgamma mutations have features of the metabolic syndrome (severe insulin resistance, dyslipidemia, and hypertension). We created a knock-in mouse model containing a potent dominant negative PPARgamma L466A mutation, shown previously to inhibit wild-type PPARgamma action in vitro. Homozygous PPARgamma L466A knock-in mice die in utero. Heterozygous PPARgamma L466A knock-in (PPARKI) mice exhibit hypoplastic adipocytes, hypoadiponectinemia, increased serum-free fatty acids, and hepatic steatosis. When subjected to high fat diet feeding, PPARKI mice gain significantly less weight than controls. Hyperinsulinemic-euglycemic clamp studies in PPARKI mice revealed insulin resistance and reduced glucose uptake into skeletal muscle. Female PPARKI mice exhibit hypertension independent of diet. The PPARKI mouse provides a novel model for studying the relationship between impaired PPARgamma function and the metabolic syndrome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.