Abstract

The rapid advances of MIMO to date have mainly stayed at the physical layer. Such fruits have not fully benefited MIMO research at the network layer mainly due to the computational complexity associated with the matrix-based model that MIMO involves. Recently, there have been some efforts to simplify link layer model for MIMO so as to facilitate research at the upper layers. These models only require simple numeric computations on MIMO's degrees-of-freedom (DoFs) to characterize spatial multiplexing (SM) and interference cancellation (IC). Thus, these models are much simpler than the original matrix-based model from the communications world. However, achievable DoF regions of these DoF-based models are not analyzed. In this paper, we re-visit this important problem of MIMO modeling. Based on accounting of how DoFs are consumed for SM and IC, we develop a tractable link layer model for multi-hop MIMO networks. We show that under common assumptions of DoF-based models and additional assumption of no dependency cycle, this model includes all the feasible solutions by the matrix-based model under SM and IC for any network topology. This work offers an important building block for theoretical research on multi-hop MIMO networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.