Abstract

Deep neural networks (DNNs) have been widely adopted in modeling electromagnetic compatibility (EMC) problems, but the training data acquisition is usually time-consuming through various simulators. This paper presents a powerful approach using an ensemble of DNN s to effectively reduce the training data size in DNN-based modeling problems. A batch of training data with the largest uncertainties is selected using active learning through the variance among the ensemble of DNNs. Subsequently, a greedy sampling algorithm is applied to select a data subset using diversity. Thus, the proposed method can achieve both uncertainty and diversity in data selection. By averaging the outputs of the DNN ensemble, the prediction error can be further reduced. Simple mathematical functions are used to validate the proposed method, and a high-dimensional stripline modeling problem also demonstrates the effectiveness of this DNN-ensemble approach. The proposed method is task agnostic and can be used in other surrogate modeling problems with DNN s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.