Abstract

Rough sets are often exploited for data reduction and classification. While they are conceptually appealing, the techniques used with rough sets can be computationally demanding. To address this obstacle, the objective of this study is to investigate the use of DNA molecules and associated techniques as an optimization vehicle to support algorithms of rough sets. In particular, we develop a DNA-based algorithm to derive decision rules of minimal length. This new approach can be of value when dealing with a large number of objects and their attributes, in which case the complexity of rough-sets-based methods is NP-hard. The proposed algorithm shows how the essential components involved in the minimization of decision rules in data processing can be realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.