Abstract
Several selection methods in the literature are essentially based on an evaluation function that determines whether a model M contributes positively to boost the performances of the whole ensemble. In this paper, we propose a method called DIversity and ACcuracy for Ensemble Selection (DIACES) using an evaluation function based on both diversity and accuracy. The method is applied on homogenous ensembles composed of C4.5 decision trees and based on a hill climbing strategy. This allows selecting ensembles with the best compromise between maximum diversity and minimum error rate. Comparative studies show that in most cases the proposed method generates reduced size ensembles with better performances than usual ensemble simplification methods
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Interactive Multimedia and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.