Abstract
Localization problem is an important and challenging topic in today's wireless sensor networks. In this paper, a novel localization refinement algorithm for LAEP, which is a range-free localization algorithm by using expected hop progress, has been put forward. The proposed localization refinement algorithm, called as CVLR, is based on position correction vectors and can resolve the LAEP's hop-distance ambiguity problem, which can lead to adjacent unknown nodes localized at the same or very close positions. CVLR can make full use of the relative position relationship of 1-hop neighboring nodes (called as CVLR1), or 1-hop and 2-hop neighboring nodes (called as CVLR2), to iteratively refine their localization positions. Furthermore, from localization accuracy and energy dissipation perspective, we optimize the communication process of CVLR2 and propose an energy-efficient improved CVLR. Simulation results show that the localization accuracy of CVLR1, CVLR2, and the improved CVLR are obviously higher than that of LAEP and DV-RND.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.