Abstract

We propose a Jacobi-style distributed algorithm to solve convex, quadratically constrained quadratic programs (QCQPs), which arise from a broad range of applications. While small to medium-sized convex QCQPs can be solved efficiently by interior-point algorithms, large-scale problems pose significant challenges to traditional algorithms that are mainly designed to be implemented on a single computing unit. The exploding volume of data (and hence, the problem size), however, may overwhelm any such units. In this paper, we propose a distributed algorithm for general, non-separable, large-scale convex QCQPs, using a novel idea of predictor-corrector primal-dual update with an adaptive step size. The algorithm enables distributed storage of data as well as parallel distributed computing. We establish the conditions for the proposed algorithm to converge to a global optimum, and implement our algorithm on a computer cluster with multiple nodes using Message Passing Interface (MPI). The numerical experiments are conducted on data sets of various scales from different applications, and the results show that our algorithm exhibits favorable scalability for solving large-scale problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.