Abstract

ATP binding cassette (ABC) transporters are integral membrane proteins that translocate a diverse array of substrates across cell membranes. We present here the dynamics of complex formation of three structurally characterized ABC transporters: the BtuCD vitamin B12 importer and MetNI D/L-methionine importer from Escherichia coli, and the Haemophilus influenzae Hi1470/1 metal-chelate importer, with their cognate binding proteins. Similar to other ABC importers, MetNI interacts with its binding protein with low affinity (Kd ~ 10-4 M). In contrast, BtuCD-F and Hi1470/1-2 form stable, high affinity complexes (Kd ~ 10-13 and 10-9 M, respectively). In BtuCD-F, vitamin B12 accelerates complex dissociation rate ~107-fold, with ATP having an additional destabilizing effect. The findings presented here highlight substantial mechanistic differences between BtuCD-F, and likely Hi1470/1-2, and the better characterized maltose and related ABC transport systems, indicating considerable mechanistic diversity within this large protein super-family.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.