Abstract

Radial velocity (RV) of stellar targets were measured using a dispersed Fourier transform spectrometer (dFTS). The instrument used a laser based optical metrology system in cooperation with a mechanical metrology system to measure the absolute position of the retro-reflectors in the dFTS with a precision of 0.1 nm. The combined metrology system data allowed stellar RV measurements to be precise at the 10 m/s level, or about 0.1% relative error with respect to the RV amplitude. The dFTS instrument is well suited for precise RV measurements, and is less cumbersome to calibrate and operate than echelle spectrometers - a competing instrument for RV measurements of stellar targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.