Abstract

In the previous paper, the GN incompatibility is newly defined and a new annihilation term of a dislocation pair due to the dynamic recovery is introduced into an expression of dislocation density. Furthermore, a multiscale model of crystal plasticity is proposed by considering GN dislocation density and incompatibility. However, details of dislocation-crystal plasticity simulation are not given. In this paper, we explain a method of dislocation-crystal plasticity analysis. A finite element simulation is carried out for an f.c.c. single crystal under plane strain tension. It is numerically predicted that micro shear bands are formed at large strain, and sub-GNBs : small angle tilt boundaries are induced along these bands. Furthermore, the annihilation of dislocation pair and the increase of dislocation mean free path characterizing stage III of work-hardening are computationally predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.