Abstract

Abstract GSN 069 is a recently discovered quasi-periodic eruption (QPE) source recurring about every 9 hr. The mechanism for the QPEs of GSN 069 is still unclear. In this work, a disk instability model is constructed to explain GSN 069 based on Pan et al. (PLC21), where the authors proposed a toy model for the repeating changing-look active galactic nuclei. We improve the work of PLC21 by including a nonzero viscous torque condition on the inner boundary of the disk and adopting a general form for the viscous stress torque in the Kerr metric. It is found that the 0.4–2 keV light curves, the light curves at different energy bands, and the phase-resolved X-ray spectrum of GSN 069 can all be qualitatively reproduced by our model. Furthermore, the profiles of light curves in QPEs can be significantly changed by the parameter μ in the viscous torque equation, which implies that our model may also be applied to other QPEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.