Abstract

Data on calculated orbital energies and experimentally measured ionization potentials of carbocyclic and heterocyclic aromatic compounds are compared and contrasted. The ordering or orbital energies and ionization potentials do not always seem to parallel one another, probably owing to either electron correlation effects, or to deviations from Koopman’s theorem. The effects on photoelectron spectra of using different light sources and analysers are discussed in relation to their bearing on the orbital orderings of aromatic compounds. The high resolution He 584 A. photoelectron spectrum of pyridine is shown to be open to two interpretations regarding the ordering of the ionization potentials of the π orbitals and the ‘nitrogen lone pair’ (n). One of the interpretations involves the three lowest pyridine ionization potentials being π (9.2 eV), π L (9.5 eV) and n (10.5 eV) whilst the other has the first three ionization potentials being the order π , n, π . The photoelectron spectra of substituted pyridines and diazines are discussed in the light of the two possible explanations for the pyridine spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.