Abstract

If we are asked why we want to use the infrared to observe gaseous nebulae, we might reply with George Mallory, who was asked why he wanted to climb Mount Everest, ‘Because its there’. More specifically, one reason is the very great space penetration possible in the infrared. Diffuse nebulae characteristically are close to the galactic plane, and interstellar extinction therefore prevents the observation of distant objects. At MATHS FORMULA the mean range to which diffuse nebulae can easily be observed is about 1500 parsecs (pc), while many of these nebulae are so reddened as to be nearly unobservable at Hβ. It is for this reason that at present the observation of diffuse nebulae is almost entirely limited to our own spiral arm and its immediate neighbours. However, because of the decrease of interstellar extinction to longer wavelengths, at 1 μm the range of observation would be about 3000 pc; at 2 μm about 10 000 pc, comparable with the distance to the centre of the Galaxy; and at 10μm, about 100 000 pc, far larger than the diameter of the Galaxy. (The form of the interstellar reddening curve is from Whitford 1958.)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.