Abstract

The 2D absolute phase estimation problem, in interferometric applications, is to infer absolute phase (not simply modulo-2π) from incomplete, noisy, and modulo-2π image observations. This is known to be a hard problem as the observation mechanism is nonlinear. In this paper we adopt the Bayesian approach. The observation density is 2π-periodic and accounts for the observation noise; the a priori probability of the absolute phase is modeled by a first order noncausal Gauss Markov random field (GMRF) tailored to smooth absolute phase images. We propose an iterative scheme for the computation of the maximum a posteriori probability (MAP) estimate. Each i2teration embodies a dis crete optimization step (ℤ-step), implemented by network programming techniques, and an iterative conditional modes (ICM) step (π-step). Accordingly, we name the algorithm ℤπM, where letter M stands for maximization. A set of experimental results, comparing the proposed algorithm with other techniques, illustrates the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.