Abstract

A fully discrete version of a piecewise polynomial collocation method is constructed to solve initial or boundary value problems of linear Fredholm integro-differential equations with weakly singular kernels. Using an integral equation reformulation and special graded grids, optimal global convergence estimates are derived. For special values of parameters an improvement of the convergence rate of elaborated numerical schemes is established. Some of our theoretical results are illustrated by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.