Abstract

Abstract We approach the dynamics of adiabatic charge transfer through bridged triarylamine cations by a direct molecular dynamics simulation involving classical and quantum mechanical degrees of freedom. Within a simple yet chemically specific model, the quantum mechanical subsystem is described by a tight-binding Hamiltonian, which is coupled to a classical force field. From a population analysis of the quantum part, the charge transfer rate can be readily extracted, including the influence of memory effects. The direct computation of the associated thermodynamic potential establishes a close link to analytical rate concepts. The theoretical data are compared to experiments, and the limits and possible extensions of our approach are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.