Abstract

An alternative way of refining phases with the origin-free modulus sum function S is shown that, instead of applying the tangent formula in sequential mode [Rius (1993). Acta Cryst. A49, 406-409], applies it in parallel mode with the help of the fast Fourier transform (FFT) algorithm. The test calculations performed on intensity data of small crystal structures at atomic resolution prove the convergence and hence the viability of the procedure. This new procedure called S-FFT is valid for all space groups and especially competitive for low-symmetry ones. It works well when the charge-density peaks in the crystal structure have the same sign, i.e. either positive or negative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.